Indexing and slicing in 2D:
import numpy as np
x=np.arange(20).reshape(4,5)
print(x)
print(x[2][2])
print(x[3][2])
print(x[3,0])
print('--------slicing -------')
print(x[0:2])
print('------------------')
print(x[0:2,0:3])
print('------------------')
print(x[1:4,1:4])
print('------------------')
x=np.arange(20)
print(x)
print('------------------')
print(x>10)
print('------------------')
print(x[x>10])
Output:
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]
12
17
15
--------slicing -------
[[0 1 2 3 4]
[5 6 7 8 9]]
------------------
[[0 1 2]
[5 6 7]]
------------------
[[ 6 7 8]
[11 12 13]
[16 17 18]]
------------------
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
------------------
[False False False False False False False False False False False True
True True True True True True True True]
------------------
[11 12 13 14 15 16 17 18 19]
Operations in numpy :
import numpy as np
x=np.arange(10)
print(x)
print('----------------------------------')
y=np.arange(10,20)
print(y)
print('----------------------------------')
print(x+y)
print('----------------------------------')
print(x-y)
print('----------------------------------')
print(x*y)
print('----------------------------------')
print(x/y)
print('---------------------------------------------------')
print(x.max())
print('----------------------------------')
print(y.max())
print('----------------------------------')
print(np.sin(x))
print('----------------------------------')
print(np.cos(x))
print('----------------------------------')
print(np.tan(x))
print('----------------------------------')
print(np.log(y))
Output:
[0 1 2 3 4 5 6 7 8 9]
--------------------------------------------------------------
[10 11 12 13 14 15 16 17 18 19]
---------------------------------------------------
[10 12 14 16 18 20 22 24 26 28]
---------------------------------------------------
[-10 -10 -10 -10 -10 -10 -10 -10 -10 -10]
---------------------------------------------------
[ 0 11 24 39 56 75 96 119 144 171]
---------------------------------------------------
[0. 0.09090909 0.16666667 0.23076923 0.28571429 0.33333333
0.375 0.41176471 0.44444444 0.47368421]
---------------------------------------------------
9
---------------------------------------------------
19
---------------------------------------------------
[ 0. 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427
-0.2794155 0.6569866 0.98935825 0.41211849]
---------------------------------------------------
[ 1. 0.54030231 -0.41614684 -0.9899925 -0.65364362 0.28366219
0.96017029 0.75390225 -0.14550003 -0.91113026]
---------------------------------------------------
[ 0. 1.55740772 -2.18503986 -0.14254654 1.15782128 -3.38051501
-0.29100619 0.87144798 -6.79971146 -0.45231566]
---------------------------------------------------
[2.30258509 2.39789527 2.48490665 2.56494936 2.63905733 2.7080502
2.77258872 2.83321334 2.89037176 2.94443898]
Operations in numpy 2D:
import numpy as np
x=np.arange(20).reshape(4,5)
print(x)
print('----------------------------')
y=np.arange(20,40).reshape(4,5)
print(y)
print('----------------------------')
print(x+y)
print('----------------------------')
print(x-y)
print('----------------------------')
print(x*y)
print('----------------------------')
print(x/y)
print('----------------------------')
print(x.max())
print('----------------------------')
print(y.max())
Output:
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]
----------------------------
[[20 21 22 23 24]
[25 26 27 28 29]
[30 31 32 33 34]
[35 36 37 38 39]]
----------------------------
[[20 22 24 26 28]
[30 32 34 36 38]
[40 42 44 46 48]
[50 52 54 56 58]]
----------------------------
[[-20 -20 -20 -20 -20]
[-20 -20 -20 -20 -20]
[-20 -20 -20 -20 -20]
[-20 -20 -20 -20 -20]]
----------------------------
[[ 0 21 44 69 96]
[125 156 189 224 261]
[300 341 384 429 476]
[525 576 629 684 741]]
----------------------------
[[0. 0.04761905 0.09090909 0.13043478 0.16666667]
[0.2 0.23076923 0.25925926 0.28571429 0.31034483]
[0.33333333 0.35483871 0.375 0.39393939 0.41176471]
[0.42857143 0.44444444 0.45945946 0.47368421 0.48717949]]
----------------------------
19
----------------------------
39
these are the basis of numpy hope you understand ,share your thoughts in comments sections
Comments
Post a Comment